Complex geometry of convex domains that cover varieties
نویسندگان
چکیده
منابع مشابه
Complex Geodesics on Convex Domains
Existence and uniqueness of complex geodesics joining two points of a convex bounded domain in a Banach space X are considered. Existence is proved for the unit ball of X under the assumption that X is 1-complemented in its double dual. Another existence result for taut domains is also proved. Uniqueness is proved for strictly convex bounded domains in spaces with the analytic Radon-Nikodym pro...
متن کاملComposition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کاملTurbulent Flow in 2-D Domains with Complex Geometry-Finite Elelment Method
Using the highly recommended numerical techniques, a finite element computer code is developed to analyse the steady incompressible, laminar and turbulent flows in 2-D domains with complex geometry. The Petrov-Galerkin finite element formulation is adopted to avoid numerical oscillations. Turbulence is modeled using the two equation k-ω model. The discretized equations are written in the form o...
متن کاملTurbulent Flow in 2-D Domains with Complex Geometry-Finite Elelment Method
Using the highly recommended numerical techniques, a finite element computer code is developed to analyse the steady incompressible, laminar and turbulent flows in 2-D domains with complex geometry. The Petrov-Galerkin finite element formulation is adopted to avoid numerical oscillations. Turbulence is modeled using the two equation k-ω model. The discretized equations are written in the form o...
متن کاملGeometry of Graph Varieties
A picture P of a graph G = (V, E) consists of a point P(v) for each vertex v ∈ V and a line P(e) for each edge e ∈ E, all lying in the projective plane over a field k and subject to containment conditions corresponding to incidence in G. A graph variety is an algebraic set whose points parametrize pictures of G. We consider three kinds of graph varieties: the picture space X (G) of all pictures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica
سال: 1989
ISSN: 0001-5962
DOI: 10.1007/bf02392734